Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomolecules ; 11(5)2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923147

RESUMO

The blood-brain barrier (BBB) plays an important protective role in the central nervous system and maintains its homeostasis. It regulates transport into brain tissue and protects neurons against the toxic effects of substances circulating in the blood. However, in the case of neurological diseases or primary brain tumors, i.e., gliomas, the higher permeability of the blood-derived substances in the brain tissue is necessary. Currently applied methods of treatment for the primary brain neoplasms include surgical removal of the tumor, radiation therapy, and chemotherapy. Despite the abovementioned treatment methods, the prognosis of primary brain tumors remains bad. Moreover, chemotherapy options seem to be limited due to low drug penetration into the cancerous tissue. Modulation of the blood-brain barrier permeability may contribute to an increase in the concentration of the drug in the CNS and thus increase the effectiveness of therapy. Interestingly, endothelial cells in cerebral vessels are characterized by the presence of adenosine 2A receptors (A2AR). It has been shown that substances affecting these receptors regulate the permeability of the BBB. The mechanism of increasing the BBB permeability by A2AR agonists is the actin-cytoskeletal reorganization and acting on the tight junctions. In this case, the A2AR seems to be a promising therapy target. This article aims to assess the possibility of increasing the BBB permeability through A2AR agonists to increase the effectiveness of chemotherapy and to improve the results of cancer therapy.


Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias/metabolismo , Receptores A2 de Adenosina/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Neoplasias/terapia , Neurônios/metabolismo , Permeabilidade , Receptores A2 de Adenosina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
2.
Neuroscience ; 422: 32-43, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678341

RESUMO

A stroke-like event follows seizures which may be responsible for the postictal state and a contributing factor to the development of seizure-induced brain abnormalities and behavioral dysfunction associated with epilepsy. Caffeine is the world's most popular drug with ∼85% of people in the USA consuming it daily. Thus, persons with epilepsy are likely to have caffeine in their body and brain during seizures. This preclinical study investigated the effects of acute caffeine on local hippocampal tissue oxygenation pre and post seizure. We continuously measured local oxygen levels in the CA1 region of the hippocampus and utilized the electrical kindling model in rats. Rats were acutely administered either caffeine, or one of its metabolites, or agonists and antagonists at adenosine sub-receptor types or ryanodine receptors prior to the elicitation of seizures. Acute caffeine administration caused a significant drop in pre-seizure hippocampal pO2. Following a seizure, caffeine, as well as two of its metabolites paraxanthine, and theophylline, increased the time below the severe hypoxic threshold (10 mmHg). Likewise, the specific A2A receptor antagonist, SCH-58261, mimicked caffeine by causing a significant drop in pre-seizure pO2 and the area and time below the severe hypoxic threshold. Moreover, the A2A receptor agonist, CGS-21680 was able to prevent the effect of both caffeine and SCH-58261 adding further evidence that caffeine is likely acting through the A2A receptor. Clinical tracking and investigations are needed to determine the effect of caffeine on postictal symptomology and blood flow in persons with epilepsy.


Assuntos
Cafeína/efeitos adversos , Hipóxia/fisiopatologia , Receptores A2 de Adenosina/fisiologia , Convulsões/fisiopatologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Região CA1 Hipocampal/metabolismo , Cafeína/análogos & derivados , Cafeína/antagonistas & inibidores , Relação Dose-Resposta a Droga , Hipóxia/complicações , Excitação Neurológica/efeitos dos fármacos , Masculino , Oxigênio/metabolismo , Fenetilaminas/farmacologia , Pirimidinas/antagonistas & inibidores , Pirimidinas/farmacologia , Ratos , Receptores A2 de Adenosina/efeitos dos fármacos , Convulsões/complicações , Triazóis/antagonistas & inibidores , Triazóis/farmacologia
3.
J Neurochem ; 142(5): 620-623, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28736837

RESUMO

Alcohol causes adenosine buildup, which inhibits wake-active neurons via adenosine A1 receptors thus disinhibiting sleep active neurons and also stimulates sleep-active neurons via A2A receptors, causing sleep. This editorial highlights the study entitled, "Lesions of the basal forebrain cholinergic neurons attenuates sleepiness and adenosine after alcohol consumption" by Sharma and colleagues. They report that the wake-promoting basal forebrain (BF) cholinergic neurons play a crucial role in mediating acute alcohol-induced sleep via adenosinergic signaling.


Assuntos
Adenosina/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/fisiologia , Homeostase/fisiologia , Sono/fisiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/tendências , Animais , Prosencéfalo Basal/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Humanos , Receptor A1 de Adenosina/fisiologia , Receptores A2 de Adenosina/fisiologia , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos , Vigília/fisiologia
4.
Addict Biol ; 21(2): 407-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25612195

RESUMO

Addiction to methamphetamine (METH) is a global health problem for which there are no approved pharmacotherapies. The adenosine 2A (A2 A ) receptor presents a potential therapeutic target for METH abuse due to its modulatory effects on striatal dopamine and glutamate transmission. Notably, A2 A receptor signalling has been implicated in the rewarding effects of alcohol, cocaine and opiates; yet, the role of this receptor in METH consumption and seeking is essentially unknown. Therefore, the current study used A2 A knockout (KO) mice to assess the role of A2 A in behaviours relevant to METH addiction. METH conditioned place preference was absent in A2 A KO mice compared with wild-type (WT) littermates. Repeated METH treatment produced locomotor sensitization in both genotypes; however, sensitization was attenuated in A2 A KO mice in a dose-related manner. METH intravenous self-administration was intact in A2 A KO mice over a range of doses and schedules of reinforcement. However, the motivation to self-administer was reduced in A2 A KO mice. Regression analysis further supported the observation that the motivation to self-administer METH was reduced in A2 A KO mice even when self-administration was similar to WT mice. Sucrose self-administration was also reduced in A2 A KO mice but only at higher schedules of reinforcement. Collectively, these data suggest that A2 A signalling is critically required to integrate rewarding and motivational properties of both METH and natural rewards.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Receptores A2 de Adenosina/fisiologia , Recompensa , Análise de Variância , Animais , Condicionamento Operante , Relação Dose-Resposta a Droga , Infusões Intravenosas , Locomoção/efeitos dos fármacos , Masculino , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Reforço Psicológico , Autoadministração , Sacarose/farmacologia , Edulcorantes/farmacologia
5.
J Cardiovasc Pharmacol ; 66(1): 25-34, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25706370

RESUMO

This study was undertaken to determine and confer the cardioprotective effects of the adenosine A2 receptor (A2AR) and its impact on myocardial autophagy in the setting of reperfusion. We established a rat ischemia model by subjecting rats to 30 minutes of ischemia (I) and 120 minutes of reperfusion (R). The A2AR agonists CGS21680 (A2aAR specific) and BAY60-6583 (A2bAR specific) were administered separately and in combination 5 minutes before reperfusion (postconditioning). No visible improvements in the rats' hemodynamic changes in response to either CGS or BAY were observed compared with untreated control groups (I/R). BAY significantly reduced infarct sizes, whereas CGS did not. Electron microscopy, enzyme-linked immunosorbent assay and TUNEL apoptosis staining results demonstrated that CGS and BAY play cardioprotective roles by maintaining mitochondria structural stability, decreasing serum cardiac troponin I (cTnI) concentrations and decreasing the number of apoptotic cells. CGS21680 and BAY60-6583 slightly increased the expression (vs. I/R group) of Bcl-2 and significantly attenuated the expression of Beclin-1, LC3B, and LAMP-2, as analyzed by Western blot, compared with the I/R alone group. Notably, BAY60-6583 exerts a predominant effect on mitochondria structural stabilization, apoptotic inhibition, and attenuation of LC3B/LAMP-2 expression. No synergistic effects were observed for the 2 agonists. Our data suggest that A2AR-mediated cardioprotection is associated with Beclin-1-induced autophagy downregulation in the setting of reperfusion. A2bAR activation exerts stronger cardioprotective effects against I/R injury compared with A2aAR.


Assuntos
Autofagia/fisiologia , Regulação para Baixo/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Receptores A2 de Adenosina/fisiologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
6.
J. physiol. biochem ; 71(1): 133-140, mar. 2015.
Artigo em Inglês | IBECS | ID: ibc-133910

RESUMO

Under physiological conditions, insulin secretion from pancreatic beta-cells is tightly regulated by different factors, including nutrients, nervous system, and other hormones. Pancreatic beta-cells are also influenced by paracrine and autocrine interactions. The results of rodent studies indicate that adenosine is present within pancreatic islets and is implicated in the regulation of insulin secretion; however, effects depend on adenosine and glucose concentrations. Moreover, species differences in adenosine action were found. In rat islets, low adenosine was demonstrated to decrease glucose-induced insulin secretion and this effect is mediated via adenosine A1 receptor. In the presence of high adenosine concentrations, other mechanisms are activated and glucose-induced insulin secretion is increased. It is also well established that suppression of adenosine action increases insulin-secretory response of beta-cells to glucose. In mouse islets, low adenosine concentrations do not significantly affect insulin secretion. However, in the presence of higher adenosine concentrations, potentiation of glucose-induced insulin secretion was demonstrated. It is also known that upon stimulation of insulin secretion, both rat and mouse islets release ATP. In rat islets, ATP undergoes extracellular conversion to adenosine. However, mouse islets are unable to convert extracellularly ATP to adenosine and adenosine arises from intracellular ATP degradation


Assuntos
Animais , Adenosina/farmacocinética , Células Secretoras de Insulina/fisiologia , Insulina , Receptores A2 de Adenosina/fisiologia , Ilhotas Pancreáticas/fisiologia , Modelos Animais
7.
Nat Commun ; 5: 5115, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25296113

RESUMO

Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that ß2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes.


Assuntos
Proteínas de Transferência de Fosfolipídeos/fisiologia , Receptores Adrenérgicos beta 2/fisiologia , Rodopsina/fisiologia , Animais , Bovinos , Opsinas/fisiologia , Conformação Proteica , Receptores A2 de Adenosina/fisiologia
8.
J Neurosci ; 33(7): 3135-50, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407968

RESUMO

Gap junctions in retinal photoreceptors suppress voltage noise and facilitate input of rod signals into the cone pathway during mesopic vision. These synapses are highly plastic and regulated by light and circadian clocks. Recent studies have revealed an important role for connexin36 (Cx36) phosphorylation by protein kinase A (PKA) in regulating cell-cell coupling. Dopamine is a light-adaptive signal in the retina, causing uncoupling of photoreceptors via D4 receptors (D4R), which inhibit adenylyl cyclase (AC) and reduce PKA activity. We hypothesized that adenosine, with its extracellular levels increasing in darkness, may serve as a dark signal to coregulate photoreceptor coupling through modulation of gap junction phosphorylation. Both D4R and A2a receptor (A2aR) mRNAs were present in photoreceptors, inner nuclear layer neurons, and ganglion cells in C57BL/6 mouse retina, and showed cyclic expression with partially overlapping rhythms. Pharmacologically activating A2aR or inhibiting D4R in light-adapted daytime retina increased photoreceptor coupling. Cx36 among photoreceptor terminals, representing predominantly rod-cone gap junctions but possibly including some rod-rod and cone-cone gap junctions, was phosphorylated in a PKA-dependent manner by the same treatments. Conversely, inhibiting A2aR or activating D4R in daytime dark-adapted retina decreased Cx36 phosphorylation with similar PKA dependence. A2a-deficient mouse retina showed defective regulation of photoreceptor gap junction phosphorylation, fairly regular dopamine release, and moderately downregulated expression of D4R and AC type 1 mRNA. We conclude that adenosine and dopamine coregulate photoreceptor coupling through opposite action on the PKA pathway and Cx36 phosphorylation. In addition, loss of the A2aR hampered D4R gene expression and function.


Assuntos
Junções Comunicantes/fisiologia , Receptores Dopaminérgicos/fisiologia , Receptores Purinérgicos P1/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Adenilil Ciclases/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Conexinas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Adaptação à Escuridão/fisiologia , Junções Comunicantes/metabolismo , Expressão Gênica/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Receptores A2 de Adenosina/genética , Receptores A2 de Adenosina/fisiologia , Receptores Dopaminérgicos/genética , Receptores de Dopamina D4/biossíntese , Receptores de Dopamina D4/genética , Receptores Purinérgicos P1/genética
9.
Addict Biol ; 18(5): 812-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23301633

RESUMO

There is emerging evidence that the adenosinergic system might be involved in drug addiction and alcohol dependence. We have already demonstrated the involvement of A2A receptors (A2AR) in ethanol-related behaviours in mice. Here, we investigated whether the A2AR agonist CGS 21680 can reduce ethanol operant self-administration in both non-dependent and ethanol-dependent Wistar rats. To rule out a potential involvement of the A1R in the effects of CGS 21680, we also tested its effectiveness to reduce ethanol operant self-administration in both heterozygous and homozygous A1R knockout mice. Our results demonstrated that CGS 21680 (0.065, 0.095 and 0.125 mg/kg, i.p.) had a bimodal effect on 10% ethanol operant self-administration in non-dependent rats. The intermediate dose was also effective in reducing 2% sucrose self-administration. Interestingly, the intermediate dose reduced 10% ethanol self-administration in dependent animals more effectively (75% decrease) when compared with non-dependent animals (57% decrease). These results suggest that the A2AR are involved in CGS 21680 effects since the reduction of ethanol self-administration was not dependent upon the presence of A1R in mice. In conclusion, our findings demonstrated the effectiveness of the A2AR agonist CGS 21680 in a preclinical model of alcohol addiction and suggested that the adenosinergic pathway is a promising target to treat alcohol addiction.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/análogos & derivados , Alcoolismo/tratamento farmacológico , Comportamento de Procura de Droga/efeitos dos fármacos , Etanol/administração & dosagem , Fenetilaminas/farmacologia , Adenosina/administração & dosagem , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/administração & dosagem , Alcoolismo/metabolismo , Análise de Variância , Animais , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Preferências Alimentares/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Motivação/efeitos dos fármacos , Fenetilaminas/administração & dosagem , Ratos , Ratos Wistar , Receptor A1 de Adenosina/genética , Receptor A1 de Adenosina/fisiologia , Receptores A2 de Adenosina/fisiologia , Esquema de Reforço , Recompensa , Autoadministração , Sacarose/administração & dosagem
10.
Biol Pharm Bull ; 35(7): 1091-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22791157

RESUMO

The Goto-Kakizaki (GK) rat is a non-obese and spontaneous model of mild Type 2 diabetes mellitus. In the present study, we compared the regulatory mechanisms of endogenous norepinephrine (NE) release from sympathetic nerves of caudal arteries of 12-week-old GK rats and age-matched normal Wistar rats. Electrical stimulation (ES) evoked significant NE release from caudal arteries of Wistar and GK rats. The amounts of NE released by ES were almost equal in Wistar and GK rats, although the NE content in caudal artery of GK rats was significantly lower than that of Wistar rats. We examined the effects of an α2-adrenoceptor agonist, clonidine (CLO), and an α2-adrenoceptor antagonist, yohimbine (YOH), on the release of endogenous NE evoked by ES. CLO significantly reduced NE release from caudal arteries of Wistar but not GK rats. On the other hand, YOH significantly increased NE release from both rats. Furthermore, we examined the effects of an A1-adenosine receptor agonist, 2-chloroadenosine (2CA), and an A1-adenosine receptor antagonist, 8-sulfophenyltheophylline (8SPT), on the release of endogenous NE evoked by ES. 2CA significantly reduced NE release from caudal arteries of Wistar but not GK rats. On the other hand, 8SPT did not affect NE release from both rats. These results suggest that the dysfunction of negative feedback regulation of NE release via presynaptic receptors on sympathetic nerves in GK rats may be involved in the autonomic nervous system dysfunction associated with diabetic autonomic neuropathy.


Assuntos
Neurônios Adrenérgicos/fisiologia , Artérias/inervação , Diabetes Mellitus Tipo 2/fisiopatologia , Norepinefrina/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Artérias/fisiopatologia , Clonidina/farmacologia , Estimulação Elétrica , Técnicas In Vitro , Ratos , Ratos Wistar , Receptor A1 de Adenosina/fisiologia , Receptores A2 de Adenosina/fisiologia , Ioimbina/farmacologia
11.
Sleep ; 35(6): 861-9, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22654205

RESUMO

STUDY OBJECTIVE: Sleep responses to chronic sleep restriction (CSR) might be very different from those observed after short-term total sleep deprivation. For example, after sleep restriction continues for several consecutive days, animals no longer express compensatory increases in daily sleep time and sleep intensity. However, it is unknown if these allostatic, or adaptive, sleep responses to CSR are paralleled by behavioral and neurochemical measures of sleepiness. DESIGN: This study was designed to investigate CSR-induced changes in (1) sleep time and intensity as a measure of electrophysiological sleepiness, (2) sleep latency as a measure of behavioral sleepiness, and (3) brain adenosine A1 (A1R) and A2a receptor (A2aR) mRNA levels as a putative neurochemical correlate of sleepiness. SUBJECTS: Male Sprague-Dawley rats INTERVENTIONS: A 5-day sleep restriction (SR) protocol consisting of 18-h sleep deprivation and 6-h sleep opportunity each day. MEASUREMENT AND RESULTS: Unlike the first SR day, rats did not sleep longer or deeper on days 2 through 5, even though they exhibited significant elevations of behavioral sleepiness throughout all 5 SR days. For all SR days and recovery day 1, A1R mRNA in the basal forebrain was maintained at elevated levels, whereas A2aR mRNA in the frontal cortex was maintained at reduced levels. CONCLUSION: CSR LEADS TO A DECOUPLING OF SLEEPINESS FROM SLEEP TIME AND SLEEP INTENSITY, SUGGESTING THAT THERE ARE AT LEAST TWO DIFFERENT SLEEP REGULATORY SYSTEMS: one mediating sleepiness (homeostatic) and the other mediating sleep time/intensity (allostatic). The time course of changes observed in adenosine receptor mRNA levels suggests that the basal forebrain and cortical adenosine system might mediate sleepiness rather than sleep time or intensity.


Assuntos
Prosencéfalo/química , Receptores Purinérgicos P1/análise , Privação do Sono/fisiopatologia , Sono/fisiologia , Vigília/fisiologia , Animais , Eletroencefalografia , Masculino , Metiltransferases , Proteínas Nucleares , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Receptor A1 de Adenosina/análise , Receptor A1 de Adenosina/fisiologia , Receptores A2 de Adenosina/análise , Receptores A2 de Adenosina/fisiologia , Receptores Purinérgicos P1/fisiologia
12.
Epilepsy Res ; 100(1-2): 157-67, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22401823

RESUMO

Although adenosine is widely assumed to be an endogenous anticonvulsant its role in epileptogenesis is still contradictory. Using slices from the dorsal (DH) and the vental (VH) rat hippocampus and extracellular recordings from the CA3 field we aimed to determine the effects of endogenous adenosine on the expression and long-term maintenance of epileptiform activity induced by blockade of adenosine receptors types A(1) (A(1)R) and A(2) (A(2)R) under conditions of low magnesium. We found that the A(1)Rs blockade induced persistent epileptiform discharges (PED) more frequently in VH (by 52%) than in DH (by 31%). The induction of PED upon an additional blockade of A(2)Rs increased in VH (by 48%) but decreased in DH (by 74%). Remarkably, the increment in VH was prevented by a blockade of NMDARs. A blockade of A(2)Rs increased the NMDAR-mediated component of evoked synaptic potential in both VH and DH (by ~100%) but suppressed the non-NMDAR-mediated component in DH but not VH. A blockade of A(1)Rs induced PED equally in DH (76%) and VH (80%) via a NMDAR-independent mechanism. A blockade of A(2)Rs under blockade of A(1)Rs and NMDARs reduced the PED to 17% in DH and to 38% in VH. These findings show that A(2)Rs play a different role in the long-term maintenance of epileptiform activity between DH and VH and suggest that endogenous activation of A(2)Rs facilitates NMDAR-independent induction of PED in both hippocampal poles, but suppresses NMDAR-dependent induction of PED in VH.


Assuntos
Adenosina/fisiologia , Epilepsia/metabolismo , Hipocampo/fisiologia , Receptores A2 de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Animais , Epilepsia/fisiopatologia , Epilepsia/prevenção & controle , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Receptores A2 de Adenosina/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Potenciais Sinápticos/fisiologia
13.
Acta Physiol (Oxf) ; 205(3): 403-10, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22356216

RESUMO

AIM: The precise mechanisms underlying reflex cutaneous vasodilatation during hyperthermia remain unresolved. The purpose of this study was to investigate a potential contribution of adenosine A1/A2 receptor activation to reflex cutaneous vasodilatation. METHODS: Eight subjects were equipped with four microdialysis fibres on the left forearm, and each fibre was randomly assigned one of four treatments: (1) lactated Ringer's (control); (2) 4 mm of the non-selective A1/A2 adenosine receptor antagonist theophylline; (3) 10 mm L-NAME to inhibit nitric oxide (NO) synthase; and (4) combined 4 mm theophylline and 10 mm L-NAME. Laser-Doppler flowmetry (LDF) was used as an index of skin blood flow, and blood pressure was measured beat-by-beat via photoplethysmography and verified via brachial auscultation. Whole-body heat stress to raise oral temperature 0.8 °C above baseline was induced via water-perused suits. Cutaneous vascular conductance (CVC) was calculated as LDF/mean arterial pressure and normalized to maximal (%CVC max) via infusion of 28 mm nitroprusside and local heating to 43 °C. RESULTS: There was no difference between control (65 ± 5%CVC max) and theophylline (63 ± 5%CVC max) sites. L-NAME (44 ± 4%CVC max) and theophylline + L-NAME (32 ± 3%CVC max) sites were significantly attenuated compared to both control and theophylline only sites (P<0.05), and combined theophylline + L-NAME sites were significantly reduced compared to L-NAME only sites (P<0.05). CONCLUSION: These data suggest A1/A2 adenosine receptor activation does not directly contribute to cutaneous active vasodilatation; however, a role for A1/A2 adenosine receptor activation is unmasked when NO synthase is inhibited.


Assuntos
Resposta ao Choque Térmico/fisiologia , Receptor A1 de Adenosina/fisiologia , Receptores A2 de Adenosina/fisiologia , Pele/irrigação sanguínea , Vasodilatação/fisiologia , Adulto , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Masculino , Microdiálise , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/efeitos dos fármacos , Nitroprussiato/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptor A1 de Adenosina/efeitos dos fármacos , Receptores A2 de Adenosina/efeitos dos fármacos , Teofilina/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
14.
J Neurosci ; 31(37): 13272-80, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21917810

RESUMO

The blood-brain barrier (BBB) is comprised of specialized endothelial cells that form the capillary microvasculature of the CNS and is essential for brain function. It also poses the greatest impediment in the treatment of many CNS diseases because it commonly blocks entry of therapeutic compounds. Here we report that adenosine receptor (AR) signaling modulates BBB permeability in vivo. A(1) and A(2A) AR activation facilitated the entry of intravenously administered macromolecules, including large dextrans and antibodies to ß-amyloid, into murine brains. Additionally, treatment with an FDA-approved selective A(2A) agonist, Lexiscan, also increased BBB permeability in murine models. These changes in BBB permeability are dose-dependent and temporally discrete. Transgenic mice lacking A(1) or A(2A) ARs showed diminished dextran entry into the brain after AR agonism. Following treatment with a broad-spectrum AR agonist, intravenously administered anti-ß-amyloid antibody was observed to enter the CNS and bind ß-amyloid plaques in a transgenic mouse model of Alzheimer's disease (AD). Selective AR activation resulted in cellular changes in vitro including decreased transendothelial electrical resistance, increased actinomyosin stress fiber formation, and alterations in tight junction molecules. These results suggest that AR signaling can be used to modulate BBB permeability in vivo to facilitate the entry of potentially therapeutic compounds into the CNS. AR signaling at brain endothelial cells represents a novel endogenous mechanism of modulating BBB permeability. We anticipate these results will aid in drug design, drug delivery and treatment options for neurological diseases such as AD, Parkinson's disease, multiple sclerosis and cancers of the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Receptor A1 de Adenosina/fisiologia , Receptores A2 de Adenosina/fisiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/imunologia , Animais , Anticorpos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Células Cultivadas , Dextranos/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Permeabilidade , Agonistas do Receptor Purinérgico P1/farmacologia , Purinas/farmacologia , Pirazóis/farmacologia , Receptor A1 de Adenosina/genética , Receptores A2 de Adenosina/genética , Junções Íntimas/metabolismo
15.
Basic Clin Pharmacol Toxicol ; 109(3): 203-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21496211

RESUMO

Adenosinergic systems have been implicated in anxiety-like states, as caffeine can induce a state of anxiety in human beings. Caffeine is an antagonist at A(1) and A(2) adenosine receptors but it remains unclear whether anxiety is mediated by one or both of these. As the adenosinergic system is rather conserved, we opted to pursue these questions using zebrafish, a widely used model organism in genetics and developmental biology. Zebrafish adenosine 1. 2A.1 and 2A.2 receptors conserve histidine residues in TM6 and TM7 that are responsible for affinity in bovine A1 receptor. We investigated the effects of caffeine, PACPX (an A(1) receptor antagonist) and 1,3-dimethyl-1-propargylxanthine (DMPX) (an A(2) receptor antagonist) on anxiety-like behaviour and locomotor activity of zebrafish in the scototaxis test as well as evaluated the effects of these drugs on pigment aggregation. Caffeine increased anxiety at the dose of 100 mg/kg, while locomotion at the dose of 10 mg/kg was increased. Both doses of 10 and 100 mg/kg induced pigment aggregation. PACPX, on the other hand, increased anxiety at a dose of 6 mg/kg and induced pigment aggregation at the doses of 0.6 and 6 mg/kg, but did not produce a locomotor effect. DMPX, in turn, increased locomotion at the dose of 6 mg/kg but did not produce any effect on pigment aggregation or anxiety-like behaviour. These results indicate that blockade of A(1)-R, but not A(2)-R, induces anxiety and autonomic arousal, while the blockade of A(2)-R induces hyperlocomotion. Thus, as in rodents, caffeine's anxiogenic and arousing effects are probably mediated by A(1) receptors in zebrafish and its locomotor activating effect is probably mediated by A(2) receptors.


Assuntos
Antagonistas do Receptor A1 de Adenosina/farmacologia , Ansiedade/induzido quimicamente , Nível de Alerta/efeitos dos fármacos , Cafeína/farmacologia , Receptor A1 de Adenosina/fisiologia , Peixe-Zebra/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Bovinos , Escuridão , Relação Dose-Resposta a Droga , Melanóforos/metabolismo , Camundongos , Dados de Sequência Molecular , Atividade Motora/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptores A2 de Adenosina/metabolismo , Receptores A2 de Adenosina/fisiologia , Alinhamento de Sequência
16.
Can J Physiol Pharmacol ; 89(3): 187-96, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21423292

RESUMO

It has been hypothesized that an interaction among adenosine A(1) receptors, protein kinase C (PKC) activation, and ATP-sensitive potassium channels (K(ATP)) mediates ischemic preconditioning in experiments on different animal species. The purpose of this study was to determine if activation of K(ATP) is functionally coupled to A(1) receptors and (or) PKC activation during metabolic inhibition (MI) in guinea pig ventricular myocytes. Perforated-patch using nystatin and conventional whole-cell recording methods were used to observe the effects of adenosine and adenosine-receptor antagonists on the activation of K(ATP) currents during MI induced by application of 2,4-dinitrophenol (DNP) and 2-deoxyglucose (2DG) without glucose, in the presence or absence of a PKC activator, phorbol 12-myristate 13-acetate (PMA). Adenosine accelerated the time course activation of K(ATP) currents during MI under the intact intracellular condition or dialyzed condition with l mmol/L ATP in the pipette solution. The accelerated effect of adenosine activation of K(ATP) under MI was not reversed by a nonselective Al adenosine receptor antagonist, 8-(p-sulfophenyl)theophylline (SPT), or a specific Al adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). However, the adenosine A(2) receptor antagonist alloxazine reversed the time course activation of the K(ATP) current under MI. An adenylate cyclase activator, forskolin, did not further abbreviate the time course activation of K(ATP) with or without adenosine. Application of a PKC blocker, chelerythrine, reversed the time course activation of K(ATP) by adenosine under MI. In addition, pretreatment with a PKC activator, PMA, had similar effects to adenosine, while adenosine did not further shorten the time required for activation of K(ATP) currents during MI with PMA pretreatment. There is no direct evidence of activation of K(ATP) currents by adenosine A(1) receptor during metabolic inhibition under our experimental condition. However, adenosine A(2) receptor activation is involved in the K(ATP) channel activation in the guinea pig ventricular myocytes, of which effect is not mediated through the increase in intracellular cAMP. Adenosine seems to interact with PKC activation to open K(ATP) during MI, but a possible link between the adenosine A(2) receptor and PKC activation in this process needs further elucidation.


Assuntos
Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Miócitos Cardíacos/metabolismo , Receptores A2 de Adenosina/fisiologia , Animais , Cobaias , Ventrículos do Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia
17.
J Allergy Clin Immunol ; 127(2): 454-461.e1-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21281872

RESUMO

BACKGROUND: Water-soluble components from pollen modulate dendritic cell (DC) functions, such as IL-12 secretion and 3'-5'-cyclic adenosine monophosphate (cAMP) signaling and migration, possibly contributing to the establishment of a T(H)2-dominated immune response against pollen. Because these effects could not solely be attributed to the previously identified pollen-associated lipid mediators, the pollen metabolome was analyzed for candidate immunomodulatory substances. OBJECTIVE: We sought to perform an analysis of the effect of pollen-associated adenosine on DC function and T(H) cell differentiation. METHODS: Fractions of aqueous pollen extracts (APEs) were generated by means of ultrafiltration and were subjected simultaneously to biological tests and metabolome analysis (ultra-high-resolution mass spectrometry) and ultraperformance liquid chromatography. Effects of pollen-derived adenosine on monocyte-derived DC cAMP signaling, cytokine response, and capacity to differentiate T(H) cells were studied. RESULTS: The less than 3-kd fraction of APEs comprised thousands of substances, including adenosine in micromolar concentrations. Pollen-derived adenosine mediated A2 receptor-dependent induction of cAMP and inhibition of IL-12p70 in DCs. APEs digested with adenosine deaminase failed to mediate IL-12 inhibition. DCs of nonatopic donors exposed to APEs showed an adenosine-dependent reduced capacity to differentiate T(H)1 cells and an enhanced capacity to induce regulatory T cells and IL-10. DCs of atopic donors failed to induce IL-10 but instead induced IL-5 and IL-13. CONCLUSION: This study identifies adenosine out of thousands of metabolites as a potent immunoregulatory substance in pollen. It acts on the level of the DC, with differential effects in atopic and nonatopic donors.


Assuntos
Adenosina/fisiologia , Células Dendríticas/fisiologia , Metaboloma , Rinite Alérgica Sazonal/etiologia , Linfócitos T Auxiliares-Indutores/imunologia , Adulto , AMP Cíclico/biossíntese , Humanos , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-12/biossíntese , Receptores A2 de Adenosina/fisiologia , Rinite Alérgica Sazonal/imunologia , Linfócitos T Reguladores/fisiologia
18.
Handb Exp Pharmacol ; (200): 331-48, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20859802

RESUMO

Caffeine is widely used to promote wakefulness and counteract fatigue induced by restriction of sleep, but also to counteract the effects of caffeine abstinence. Adenosine is a physiological molecule, which in the central nervous system acts predominantly as an inhibitory neuromodulator. Adenosine is also a sleep-promoting molecule. Caffeine binds to adenosine receptors, and the antagonism of the adenosinergic system is believed to be the mechanism through which caffeine counteracts sleep in humans as well as in other species. The sensitivity for caffeine varies markedly among individuals. Recently, genetic variations in genes related to adenosine metabolism have provided at least a partial explanation for this variability. The main effects of caffeine on sleep are decreased sleep latency, shortened total sleep time, decrease in power in the delta range, and sleep fragmentation. Caffeine may also decrease the accumulation of sleep propensity during waking, thus inducing long-term harmful effects on sleep quality.


Assuntos
Cafeína/farmacologia , Sono/efeitos dos fármacos , Adenosina/fisiologia , Animais , Humanos , Receptor A1 de Adenosina/fisiologia , Receptores A2 de Adenosina/fisiologia , Sono/fisiologia
19.
J Neuroimmunol ; 224(1-2): 85-92, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20570369

RESUMO

We characterized the role of adenosine receptor (AR) subtypes in the modulation of glutamatergic neurotransmission by the chemokine fractalkine (CX3CL1) in mouse hippocampal CA1 neurons. CX(3)CL1 causes a reversible depression of excitatory postsynaptic current (EPSC), which is abolished by the A(3)R antagonist MRS1523, but not by A(1)R (DPCPX) or A(2A)R (SCH58261) antagonists. Consistently, CX3CL1-induced EPSC depression is absent in slices from A(3)R(-/-) but not A(1)R(-/-) or A(2A)R(-/-) mice. Further, A(3)R stimulation causes similar EPSC depression. In cultured neurons, CX3CL1-induced depression of AMPA current shows A(1)R-A(3)R pharmacology. We conclude that glutamatergic depression induced by released adenosine requires the stimulation of different ARs.


Assuntos
Região CA1 Hipocampal/imunologia , Região CA1 Hipocampal/metabolismo , Quimiocina CX3CL1/fisiologia , Potenciais Pós-Sinápticos Excitadores/imunologia , Inibição Neural/imunologia , Receptores Purinérgicos P1/fisiologia , Transmissão Sináptica/imunologia , Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A3 de Adenosina , Animais , Região CA1 Hipocampal/ultraestrutura , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/genética , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/imunologia , Terminações Pré-Sinápticas/metabolismo , Receptor A1 de Adenosina/deficiência , Receptor A1 de Adenosina/fisiologia , Receptor A3 de Adenosina/deficiência , Receptor A3 de Adenosina/fisiologia , Receptores A2 de Adenosina/deficiência , Receptores A2 de Adenosina/fisiologia , Receptores Purinérgicos P1/deficiência , Receptores Purinérgicos P1/genética , Transmissão Sináptica/genética
20.
Am J Physiol Lung Cell Mol Physiol ; 298(6): L755-67, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20228181

RESUMO

We have previously demonstrated that adenosine plus homocysteine enhanced endothelial basal barrier function and protected against agonist-induced barrier dysfunction in vitro through attenuation of RhoA activation by inhibition of isoprenylcysteine-O-carboxyl methyltransferase. In the current study, we tested the effect of elevated adenosine on pulmonary endothelial barrier function in vitro and in vivo. We noted that adenosine alone dose dependently enhanced endothelial barrier function. While adenosine receptor A(1) or A(3) antagonists were ineffective, an adenosine transporter inhibitor, NBTI, or a combination of DPMX and MRS1754, antagonists for adenosine receptors A(2A) and A(2B), respectively, partially attenuated the barrier-enhancing effect of adenosine. Similarly, inhibition of both A(2A) and A(2B) receptors with siRNA also blunted the effect of adenosine on barrier function. Interestingly, inhibition of both transporters and A(2A)/A(2B) receptors completely abolished adenosine-induced endothelial barrier enhancement. The adenosine receptor A(2A) and A(2B) agonist, NECA, also significantly enhanced endothelial barrier function. These data suggest that both adenosine transporters and A(2A) and A(2B) receptors are necessary for exerting maximal effect of adenosine on barrier enhancement. We also found that adenosine enhanced Rac1 GTPase activity and overexpression of dominant negative Rac1 attenuated adenosine-induced increases in focal adhesion complexes. We further demonstrated that elevation of cellular adenosine by inhibition of adenosine deaminase with Pentostatin significantly enhanced endothelial basal barrier function, an effect that was also associated with enhanced Rac1 GTPase activity and with increased focal adhesion complexes and adherens junctions. Finally, using a non-inflammatory acute lung injury (ALI) model induced by alpha-naphthylthiourea, we found that administration of Pentostatin, which elevated lung adenosine level by 10-fold, not only attenuated the development of edema before ALI but also partially reversed edema after ALI. The data suggest that adenosine deaminase inhibition may be useful in treatment of pulmonary edema in settings of ALI.


Assuntos
Receptores A2 de Adenosina/fisiologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/complicações , Adenosina/farmacologia , Inibidores de Adenosina Desaminase , Junções Aderentes/efeitos dos fármacos , Animais , Bovinos , Endotélio/metabolismo , Endotélio Vascular/citologia , Adesões Focais/metabolismo , Pulmão/metabolismo , Masculino , Proteínas de Transporte de Nucleosídeos/fisiologia , Pentostatina/farmacologia , Pentostatina/uso terapêutico , Edema Pulmonar/prevenção & controle , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/fisiologia , Receptor A2B de Adenosina/fisiologia , Tioureia/análogos & derivados , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...